Scattering / extinction / absorption cross-sections of silver nanowires (infinite cylinders) using meep

Particles scatter and absorb electromagnetic radiation. One often needs to compare the amount of scattering/absorption/extinction for particles of different shapes, composition, sizes and incident light properties (polarization, frequency and angle). In this regard, the concept of cross-sections comes into picture. There are three types of cross-sections, 1) scattering 2) absorption and 3) extinction. All of Read More …

Arbitrary 2d shapes in MEEP

In MEEP (1.1.1), dielectric structures are often created by constructive geometry (adding and subtracting primitive shapes). The primitive shapes that are allowed are blocks, cylinders, ellipsoids and cones. To create a complex shape, one has to decompose the geometry into these primitive shapes. Over the weekend, I was wondering if it was possible to somehow Read More …

Electric Field in Metal Nanoparticle Dimers

Metal nanoparticles exhibit localized surface plasmon resonance (LSPR). One can think of LSPR as resonance of electron sea oscillations driven by incident electric field. This is similar to the way a spring-mass system attains resonance under external periodic driving force. The result of this plasmon resonance is enhanced dipole moment or charge separation, which leads to Read More …

Charge density in metal nanoparticles at plasmon resonance

It is important to know the magnitude and distribution of electric field near the metallic nanoparticles at plasmon resonance. One can look at the electric field and say whether the plasmon mode is dipolar or higher order mode such as qudrapolar mode. At many times one is also interested to know the surface charge density Read More …

Spoof Plasmons / Designer Surface Plasmons

Aim of this article/post: To 1) introduce the concept of Designer surface plasmons or Spoof plasmons and 2) Dispersion relations and Visualization of the fields using MEEP code. (Some of the text/simulations are taken from my paper in the area of DSPs.) Surface Plasmons are electromagnetic waves that travel at the interface of metals such Read More …

DDSCAT and electric field at plasmon resonance

Discrete Dipole Approximation (DDA) is an important tool in plasmonics research. Using DDA, one can calculate scattering properties of nanoparticles at various wavelengths, polarizations and surrounding medium. The specialty of DDA is that one can calculate scattering properties of irregular shape particles (particles other than spheroids). DDA is based on representing a particle into a Read More …

Nmie: Extinction, Scattering and Absorption efficiencies of multilayer nanoparticles

Since 2009, I have been a regular user of Nanohub.org. www.Nanohub.org is a website that provides a platform for online simulation, research and teaching resources. Of interest is the ability to perform simulation online without installing software on your local computer. I envision that this type of cloud computing model will be the future of Read More …