WINSPALL software for surface plasmon resonance experiments

One needs to fit the reflectivity curves obtained in surface plasmon resonance experiments with theoretical models. A free software (for non commercial use) called Winspall exactly does that. According to the developers, WINSPALL is a PC based software which computes the reflectivity of optical multilayer systems. It is based on the Fresnel equations and the matrix formalism. It can be used to analyze surface plasmon experiments. WINSPALL was developed in the Knoll group. WINSPALL is available for use without charge. It may not be reused for commercial purposes. It is available for download here. you can download the software from Read More …

Dynamic Exciton-Plasmon Coupling

Our paper titled “Dynamically Tuning Plasmon-Exciton Coupling in Arrays of Nanodisk-J-aggregate Complexes” has been accepted as front cover image of Advanced Materials . In this work, we demonstrated the dynamic tuning of plasmon-exciton resonant coupling in arrays of nanodisk–J-aggregate complexes. The angle-resolved spectra of an array of bare Au nanodisks exhibited continuous shifting of localized surface plasmon resonances and this characteristic enabled the production of real-time, controllable spectral overlaps between molecular resonance and plasmonic resonance. In this work we explored resonant interaction strength as a function of spectral overlap. In experiments where we changed the incident angle of a probe Read More …

Radiation from an oscillating dipole

The electric field from an oscillating dipole is given by:, where is the position vector, is the frequency of dipole oscillation, is the dipole moment. The two terms in the electric field consists of 1) near field (area near to the dipole) and 2) far field (area far from the dipole) contributions. Far field falls of as and the near field falls of by . A beautiful simulation showing the electric field radiation from a dipole is shown below. This simulation is part of Sophocles J. Orfanidis book on electromagnetic waves and antennas.  For more details on 1) how the Read More …

Resources on Electromagnetics/Plasmonics/Nanophotonics

These are some resources on Electromagnetics/plasmonics/nanophotonics I will maintain a list of free resources on electromagnetics, plasmonics, nanophotonics, optics and other related topics here. If any of you (readers) know any other free resources related to this topic, please let me know and I can add into these lists. Free books: Electromagnetic waves and Antennas by Prof. Sophocles J. Orfanidis Surface plasmons by Smooth and Rough surfaces by Heinz Raether (Note: This book is hosted by Prof. Shalaev’s on Nanophotonics & Metamaterials course website). Photonic Crystals:Molding the Flow of Light by John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn, and Robert D. Meade. This can be downloaded from their Read More …